This spider diagram compares three computational chemistry methods: Classical Force Fields, Foundational ML Force Fields, and Density Functional Theory (DFT). The comparison is based on three key attributes:
This diagram shows common trade-offs, highlighting how Foundational ML Force Fields aim to bridge the gap between the speed of classical methods and the accuracy of DFT, while offering improved generalizability over classical force fields.
\documentclass[tikz]{standalone}
\usetikzlibrary{shapes.geometric,calc}
\begin{document}
\begin{tikzpicture}
% Define named coordinates
\coordinate (origin) at (0,0);
\coordinate (acc) at (0,4);
\coordinate (speed) at (-3.464,-2);
\coordinate (transfer) at (3.464,-2);
% Define the axes
\draw[gray] (origin) -- (acc) (origin) -- (speed) (origin) -- (transfer);
% Draw the triangles
\foreach \r in {1,2,3,4}
{
\draw[dotted,gray,line width=0.9pt] (0,\r) -- (-0.866*\r,-0.5*\r) -- (0.866*\r,-0.5*\r) -- cycle;
}
% Label the axes
\node[anchor=south] at (acc) {Accuracy};
\node[anchor=north east] at (speed) {speed};
\node[anchor=north west] at (transfer) {Transferability};
% Plot the shapes
\draw[red, thick, fill=red, opacity=0.2] (0,2) coordinate (CFFACC) -- (speed) -- (.87,-.5) -- cycle;
\draw[blue, thick, fill=blue, opacity=0.2] (0,3) -- (-2.598,-1.5) -- (2.598,-1.5) -- cycle;
\draw[green!80!black, thick, fill=green!80!black, opacity=0.2] (acc) -- (-0.866,-0.5) -- (transfer) -- cycle;
% Add rotated legend labels inside the shapes
\node[red, anchor=south, rotate=49] at ($(speed)!0.5!(CFFACC)$) {Classical Force Fields};
\node[blue, anchor=south] at ($(speed)!0.5!(transfer)$) {Foundational ML Force Fields};
\node[green!80!black, anchor=center] at ($(acc)!0.5!(transfer)$) [anchor=north, rotate=-60] {DFT};
\end{tikzpicture}
\end{document}