3d surface plot of the complex sign function over the complex plane. Used in the Matsubara summation of thermal quantum field theory to split contour integrals in the complex plane into two parts, the first being branch-cut free and the second evident branch cut structure.
\documentclass{standalone}
\usepackage{mathtools,pgfplots}
\pgfplotsset{compat=newest}
\let\Im\relax
\DeclareMathOperator{\Im}{Im}
\let\Re\relax
\DeclareMathOperator{\Re}{Re}
\begin{document}
\begin{tikzpicture}
\begin{axis}[
xlabel=$\Re(p_0)$,
ylabel=$\Im(p_0)$,
zlabel=$s(p_0)$,
domain=-1:1, surf, shader=flat,
xtick distance=1,
ytick distance=1,
ztick distance=1,
tickwidth=0,
]
\addplot3[blue!30] coordinates {
(-1, 1, -1) (0, 1, -1)
(-1, 0, -1) (0, 0, -1)
};
\addplot3[blue!30] coordinates {
(1, -1, -1) (0, -1, -1)
(1, 0, -1) (0, 0, -1)
};
% Zero plane
\addplot3[gray, opacity=0.1, samples=2]{0};
\addplot3[orange!80] coordinates {
(0, 0, 1) (1, 0, 1)
(0, 1, 1) (1, 1, 1)
};
\addplot3[orange!80] coordinates {
(0, 0, 1) (-1, 0, 1)
(0, -1, 1) (-1, -1, 1)
};
\end{axis}
\end{tikzpicture}
\end{document}