« home

Bose Einstein Distribution 3d

Tags

physicsstatistical mechanicsMatsubara

Surface plot of the Bose-Einstein distribution over the complex plane. This plot shows an important feature of the Matsubara formalism developed for QFT at non-zero temperature. It's a method to calculate expectation values of operators in a canonical ensemble evolved by an imaginary time. In momentum space, this leads to the replacement of continuous frequencies by discrete imaginary (Matsubara) frequencies. Away from the imaginary axis, the distribution becomes approximately flat, particularly at sufficiently low temperatures. Pulled from arxiv:1712.09863.


Bose Einstein Distribution 3d

  Edit

Overleaf Logo Open in Overleaf

  Download

PNG PNG (HD) PDF TeX

  Code

bose-einstein-distribution-3d.tex (34 lines)

\documentclass{standalone}

\usepackage{pgfplots,mathtools}
\pgfplotsset{compat=newest}

\let\Re\relax
\DeclareMathOperator{\Re}{Re}
\let\Im\relax
\DeclareMathOperator{\Im}{Im}

\begin{document}
\begin{tikzpicture}
  \begin{axis}[
      xlabel=$\Re(p_0)$,
      ylabel=$\Im(p_0)$,
      zlabel=$n_\text{B}(p_0)$,
      x label style={at={(0.35, 0)}},
      y label style={at={(0.95, 0.15)}},
      shader=flat,
      tickwidth=0pt
    ]

    \def\nB{(e^(2*x) - 2*e^x*cos(deg(y)) + 1)^(-1/2)}

    \addplot3[surf, opacity=0.5, domain=1:10, y domain=-10:10]{\nB};

    \addplot3[surf, opacity=0.5, domain=-10:-2, y domain=-10:10]{\nB};

    \addplot3[surf, opacity=0.5, domain=-2:1, y domain=-10:10, restrict z to domain*=0:2]{\nB};

  \end{axis}
\end{tikzpicture}
\end{document}