Illustrating the change in the real part of the Bose-Einstein distribution, i.e. the average occupancy of the ground state of a bosonic system, from doubling the temperature. Pulled from arxiv:1712.09863.
\documentclass{standalone}
\usepackage{pgfplots,mathtools}
\pgfplotsset{compat=newest}
\usetikzlibrary{intersections}
\let\Re\relax
\DeclareMathOperator{\Re}{Re}
\begin{document}
\begin{tikzpicture}
\begin{axis}[
domain = 0:2, ymax = 5,
xlabel = $\Re(p_0)$,
ylabel = $n_\text{B}(p_0)$,
ticks=none, smooth,
thick, axis lines = left,
every tick/.style = {thick},
width=8cm, height=7cm]
\def\nB#1{1/(e^(x/#1) - 1) + 1/2}
\addplot[name path=T1, color=red] {\nB{0.5}};
\addplot[name path=T2, color=yellow] {\nB{1}};
\addplot[name path=T3, color=blue] {\nB{2}};
\addplot[draw=none, name path=aux] {3*x};
\end{axis}
\draw[shorten >=2, shorten <=2, name intersections={of=T1 and aux, name=int1}, name intersections={of=T2 and aux, name=int2}] (int1-1) edge[->, bend left] node[midway, below right=-1pt, font=\scriptsize] {$2 \cdot T$} (int2-1);
\draw[shorten >=2, shorten <=2, name intersections={of=T3 and aux, name=int3}] (int2-1) edge[->, bend left] node[midway, below right=-1pt, font=\scriptsize] {$2 \cdot T$} (int3-1);
\end{tikzpicture}
\end{document}