« home

Thermodynamic Ensemble transforms

Tags

physicsthermodynamicsstatistical mechanics

Equivalence of thermodynamic ensembles through Laplace and Legendre transforms.


Thermodynamic Ensemble transforms

  Edit

Overleaf Logo Open in Overleaf

  Download

PNG PNG (HD) PDF SVG TeX

  Code

thermo-ensemble-trafos.tex (30 lines)

\documentclass[tikz]{standalone}

\usetikzlibrary{positioning}

\begin{document}
\begin{tikzpicture}[trafo/.style={midway,font=\tiny}]

  \def\hd{2}\def\vd{0.5}

  \node (Zm) at (0,0) {$Z_m(E)$};
  \node[right=\hd of Zm] (Zc) {$Z_c(\beta)$};
  \node[right=\hd of Zc] (Zg) {$Z_g(\mu)$};

  \node[below=\vd of Zm] (Sm) {$\sigma = \frac{S_m}{N}$};
  \node[below=\vd of Zc] (F) {$f = \frac{F}{N}$};
  \node[below=\vd of Zg] (O) {$\frac{\Omega}{V}$};

  \draw[->] (Zm) -- (Sm);
  \draw[->] (Zc) -- (F);
  \draw[->] (Zg) -- (O);

  \draw[->] (Zm) -- (Zc) node[trafo,below] {Laplace in $E$};
  \draw[->] (Zc) -- (Zg) node[trafo,below] {Laplace in $N$};

  \draw[->] (Sm) -- (F) node[trafo,above] {Legendre in $\epsilon = \frac{E}{N}$};
  \draw[->] (F) -- (O) node[trafo,above] {Legendre in $\rho = \frac{N}{V}$};

\end{tikzpicture}
\end{document}