A plot comparing the distribution functions of Bose-Einstein, Boltzmann, and Fermi-Dirac statistics as a function of the reduced chemical potential . This visualization highlights the differences between the three types of distribution functions, which are used to describe the behavior of particles in different statistical systems.
\documentclass{standalone}
\usepackage{pgfplots}
\pgfplotsset{compat=newest}
\begin{document}
\begin{tikzpicture}
\begin{axis}[
xlabel = $\beta (\epsilon - \mu)$,
ylabel = $\langle n\rangle$,
ymin = 0,ymax = 1.8,
smooth,thick,
axis lines = center,
every tick/.style = {thick},
legend cell align=left,
legend style={legend pos=north east,font=\tiny},
width=10cm,height=5cm]
\def\xmax{7}
\addplot[color=blue,domain=0:\xmax]{1/(e^x - 1)};
\addplot[color=orange,domain=-1:\xmax]{1/e^x};
\addplot[color=red,domain = -\xmax:\xmax]{1/(e^x + 1)};
\legend{Bose-Einstein,Boltzmann,Fermi-Dirac}
\end{axis}
\end{tikzpicture}
\end{document}