A plot illustrating the temperature-dependent phase transitions of a material as a function of the critical temperature (). The blue curve represents the low-temperature phase, the red curve represents the high-temperature phase, and the orange curve shows the critical mass () as a function of temperature. This visualization helps to understand the behavior of materials as they undergo phase transitions due to changes in temperature.
\documentclass{standalone}
\usepackage{pgfplots}
\pgfplotsset{compat=newest}
\begin{document}
\begin{tikzpicture}
\begin{axis}[
xlabel = $T$,
smooth,thick,
domain=0:1.1,
ymax=2.8,
axis lines = center,
every tick/.style = {thick},
legend cell align=left,
legend style={font=\tiny}]
\def\Tc{1}
\addplot[color=blue,samples=75]{sqrt(3)*(\Tc/x - 1)^(1/2)};
\addplot[color=red]{sqrt(3)*(x/\Tc)^(3/2)};
\addplot[color=orange,samples=75]{sqrt(3)*(x/\Tc)^(3/2)*(\Tc/x - 1)^(1/2)};
\legend{$\sqrt{3} \left(T_c/T - 1\right)^{1/2}$,
$\sqrt{3} \left(T/T_c\right)^{3/2}$,
$m_c(T)$}
\end{axis}
\end{tikzpicture}
\end{document}