and are concave functions. Since decomposes into sums of these two components, it too must be concave. Any extremum of a concave function is a maximum. This fact is used in statistical physics to find the equilibrium distribution of many-particle systems. See problem 2 on this exercise sheet.
\documentclass{standalone}
\usepackage{pgfplots}
\pgfplotsset{compat=newest}
\begin{document}
\begin{tikzpicture}
\begin{axis}[
domain=0:2.7,
xlabel=$x$,
smooth,thick,
axis lines=center,
every tick/.style={thick},
legend style={cells={anchor=west}},
legend pos=north west]
\addplot[color=blue]{x*ln(x)};
\addplot[color=red]{x-1};
\legend{$x \, \ln(x)$,$x-1$}
\end{axis}
\end{tikzpicture}
\end{document}